skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eom, Taesik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The development of electronic devices from naturally derived materials is of enormous scientific interest. Melanin, a dark protective pigment ubiquitous in living creatures, may be particularly valuable because of its ability to conduct charges both electronically and ionically. However, device applications are severely hindered by its relatively poor electrical properties. Here, the facile preparation of conductive melanin composites is reported in which melanin nanoparticles (MNPs), directly extracted from squid inks, form electrically continuous junctions by tight clustering in a poly(vinyl alcohol) (PVA) matrix. Prepared as freestanding films and patterned microstructures by a series of precipitation, dry casting, and post‐thermal annealing steps, the percolated composites show electrical conductivities as high as 1.17 ± 0.13 S cm−1at room temperature, which is the best performance yet obtained with biologically‐derived nanoparticles. Furthermore, the biodegradability of the MNP/PVA composites is confirmed through appetitive ingestion byZophobas morioslarvae (superworms). This discovery for preparing versatile biocomposites suggests new opportunities in functional material selections for the emerging applications of implantable, edible, green bioelectronics. 
    more » « less